Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(9): eadi2742, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38416822

ABSTRACT

Androgen receptor (AR) drives prostate cancer (PC) growth and progression, and targeting AR signaling is the mainstay of pharmacological therapies for PC. Resistance develops relatively fast as a result of refueled AR activity. A major gap in the field is the lack of understanding of targetable mechanisms that induce persistent AR expression in castrate-resistant PC (CRPC). This study uncovers an unexpected function of active Stat5 signaling, a known promoter of PC growth and clinical progression, as a potent inducer of AR gene transcription. Stat5 suppression inhibited AR gene transcription in preclinical PC models and reduced the levels of wild-type, mutated, and truncated AR proteins. Pharmacological Stat5 inhibition by a specific small-molecule Stat5 inhibitor down-regulated Stat5-inducible genes as well as AR and AR-regulated genes and suppressed PC growth. This work introduces the concept of Stat5 as an inducer of AR gene transcription in PC. Pharmacological Stat5 inhibitors may represent a new strategy for suppressing AR and CRPC growth.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Signal Transduction , Transcription, Genetic , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
2.
Commun Biol ; 6(1): 417, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37059746

ABSTRACT

Gene behavior is governed by activity of other genes in an ecosystem as well as context-specific cues including cell type, microenvironment, and prior exposure to therapy. Here, we developed the Algorithm for Linking Activity Networks (ALAN) to compare gene behavior purely based on patient -omic data. The types of gene behaviors identifiable by ALAN include co-regulators of a signaling pathway, protein-protein interactions, or any set of genes that function similarly. ALAN identified direct protein-protein interactions in prostate cancer (AR, HOXB13, and FOXA1). We found differential and complex ALAN networks associated with the proto-oncogene MYC as prostate tumors develop and become metastatic, between different cancer types, and within cancer subtypes. We discovered that resistant genes in prostate cancer shared an ALAN ecosystem and activated similar oncogenic signaling pathways. Altogether, ALAN represents an informatics approach for developing gene signatures, identifying gene targets, and interpreting mechanisms of progression or therapy resistance.


Subject(s)
Ecosystem , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/pathology , Genes, myc , Genomics , Signal Transduction/genetics , Tumor Microenvironment/genetics
3.
Cell Cycle ; 22(11): 1303-1318, 2023 06.
Article in English | MEDLINE | ID: mdl-37098827

ABSTRACT

The prostate epithelium is composed of two predominant cell populations: luminal and basal epithelial cells. Luminal cells have a secretory function that supports male fertility while basal cells function in regeneration and maintenance of epithelial tissue. Recent studies in humans and mice have expanded our knowledge of the role and regulation of luminal and basal cells in prostate organogenesis, development, and homeostasis. The insights from healthy prostate biology can inform studies focused on the origins of prostate cancer, progression of the disease, and development of resistance to targeted hormonal therapies. In this review, we discuss a critical role for basal cells in the development and maintenance of healthy prostate tissue. Additionally, we provide evidence supporting a role for basal cells in oncogenesis and therapeutic resistance mechanisms of prostate cancer. Finally, we describe basal cell regulators that may promote lineage plasticity and basal cell identity in prostate cancers that have developed therapeutic resistance. These regulators could serve as therapeutic targets to inhibit or delay resistance and thereby improve outcomes for prostate cancer patients.


Subject(s)
Prostate , Prostatic Neoplasms , Humans , Male , Mice , Animals , Epithelial Cells , Cell Transformation, Neoplastic , Carcinogenesis , Organogenesis
4.
Nat Commun ; 12(1): 6377, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34737261

ABSTRACT

Endocrine therapies for prostate cancer inhibit the androgen receptor (AR) transcription factor. In most cases, AR activity resumes during therapy and drives progression to castration-resistant prostate cancer (CRPC). However, therapy can also promote lineage plasticity and select for AR-independent phenotypes that are uniformly lethal. Here, we demonstrate the stem cell transcription factor Krüppel-like factor 5 (KLF5) is low or absent in prostate cancers prior to endocrine therapy, but induced in a subset of CRPC, including CRPC displaying lineage plasticity. KLF5 and AR physically interact on chromatin and drive opposing transcriptional programs, with KLF5 promoting cellular migration, anchorage-independent growth, and basal epithelial cell phenotypes. We identify ERBB2 as a point of transcriptional convergence displaying activation by KLF5 and repression by AR. ERBB2 inhibitors preferentially block KLF5-driven oncogenic phenotypes. These findings implicate KLF5 as an oncogene that can be upregulated in CRPC to oppose AR activities and promote lineage plasticity.


Subject(s)
Kruppel-Like Transcription Factors/metabolism , Neuroendocrine Cells/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptor, ErbB-2/metabolism , Receptors, Androgen/metabolism , Cell Line, Tumor , Humans , Male , Neoplasm Staging , Neuroendocrine Cells/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Signal Transduction , Transcriptional Activation
5.
Nat Commun ; 12(1): 2437, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893286

ABSTRACT

CRISPR-Cas9 cytidine and adenosine base editors (CBEs and ABEs) can disrupt genes without introducing double-stranded breaks by inactivating splice sites (BE-splice) or by introducing premature stop (pmSTOP) codons. However, no in-depth comparison of these methods or a modular tool for designing BE-splice sgRNAs exists. To address these needs, we develop SpliceR ( http://z.umn.edu/spliceR ) to design and rank BE-splice sgRNAs for any Ensembl annotated genome, and compared disruption approaches in T cells using a screen against the TCR-CD3 MHC Class I immune synapse. Among the targeted genes, we find that targeting splice-donors is the most reliable disruption method, followed by targeting splice-acceptors, and introducing pmSTOPs. Further, the CBE BE4 is more effective for disruption than the ABE ABE7.10, however this disparity is eliminated by employing ABE8e. Collectively, we demonstrate a robust method for gene disruption, accompanied by a modular design tool that is of use to basic and translational researchers alike.


Subject(s)
Adenosine/metabolism , CRISPR-Cas Systems , Computational Biology/methods , Cytidine/metabolism , Gene Editing/methods , Adenosine/chemistry , Base Sequence , Cells, Cultured , Cytidine/chemistry , Humans , Internet , K562 Cells , Reproducibility of Results , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...